MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia

نویسندگان

  • Yuan Yao
  • Qiyue Deng
  • Weilin Song
  • Huiyu Zhang
  • Yuanjing Li
  • Yang Yang
  • Xin Fan
  • Minghan Liu
  • Jin Shang
  • Chao Sun
  • Yu Tang
  • Xiangting Jin
  • Huan Liu
  • Bo Huang
  • Yue Zhou
چکیده

Degenerative cartilage endplate (CEP) shows decreased chondrification and increased ossification. Cartilage endplate stem cells (CESCs), with the capacity for chondro-osteogenic differentiation, are responsible for CEP restoration. CEP is avascular and hypoxic, while the physiological hypoxia is disrupted in the degenerated CEP. Hypoxia promoted chondrogenesis but inhibited osteogenesis in CESCs. This tissue-specific differentiation fate of CESCs in response to hypoxia was physiologically significant with regard to CEP maintaining chondrification and refusing ossification. MIF, a downstream target of HIF1A, is involved in cartilage and bone metabolisms, although little is known about its regulatory role in differentiation. In CESCs, MIF was identified as a key point through which HIF1A regulated the chondro-osteogenic differentiation. Unexpectedly, unlike the traditionally recognized mode, increased nuclear-expressed MIF under hypoxia was identified to act as a transcriptional regulator by interacting with the promoter of SOX9 and RUNX2. This mode of HIF1A/MIF function may represent a target for CEP degeneration therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genome-wide analysis of the gene expression profiles and alternative splicing events during the hypoxia-regulated osteogenic differentiation of human cartilage endplate-derived stem cells

It has been hypothesized that intervertebral disc degeneration is initiated by degeneration of the cartilage endplate (CEP), which is characterized by cartilage ossification. CEP‑derived stem cells (CESCs), with the potential for chondro‑osteogenic differentiation, may be responsible for the balance between chondrification and ossification in the CEP. The CEP remains in an avascular and hypoxic...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells

Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016